
—~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
_
~--~ - . -- -

~

8. Program Setup

The Translator and Executer are run in Multics timesharing mode. Begin
with three ASCII segments containing (1) a SEMANOL(76) metaprogram, (2)
an object program in the language described by the metaprogram, and
(3) input data for the object program. Then proceed as in Section 9 below.

9. Operating Instructions

The SEMANOL(76) Interpreter program is a standard Multics job; therefore,
computer operators will follow accepted Multics procedures when the Inter—
pr~ter is active. However, an extensive set of user commands is available
as described in the following text.

9.1 Translator Command

A single command , the translate command, is provided with the SEMANOL(76)
Translator. This command invokes the Translator and so causes the trans-
lation of SEMANOL(76) metalanguage into SIL code. This command cannot be
called recursively. This command has the following format:

translate pathl path2 —control_args- where:

1. pathl is the pathname of a SEMANOL(76) source segment.
2. path2 is the pathnatne of a segment to contain the SIL

code output.
3. control_args can be chosen from the following list of control

arguments:

—check,—ck is used for syntactic and semantic checking of a
SEMANOL(76) program. No SIL code is produced.
The path2 argument need not be specified and is
ignored if present.

—brief,—bf causes the error summary information, normally
written into the error_output I/O switch, to be
suppressed.

—no_error , causes error messages, normally written into the
—noe error_output I/O switch, to be suppressed.

—xref pathx, generates primitive cross reference information in
—x the segment specified by pathx.

—stat causes statistical information about the source
program and translator resource usage to be output
into the error output I/O switch.

18

~ —~ v--y~ _
~~~~~~~~ • .  -~~~~~ -, - — — — -~ _ _ _

- - - - - -

—incremental allows incremental translation of part~’tl—inc SEMANOL(76) metaprograms . If no keyword is
present in the input segment, then it is assumed
to contain only semantic definitions. If no
input segment is specified, the default path
“[process_directory] aincremental_source” is used.
If no output segment is specified, the default
path “(process_directory] >incremental_sil” is
used. The symbol table segments are assumed to be
correct and are not reset. This means that use of
the incremental option must follow a non—incremental
tr3nslat ion performed since the last login or
newjroc.

—debug causes the debug program to be called as the last
—db action after a Translator error. This is a testing

feature, and is not intended for general use.

Invoking the translator without control arguments produces a SIL file,
error messages and an error summary.

Error Diagnostics

The SEMANOL(76) Translator outputs four classes of errors.

1. Warning only. Compilation continues without ill effect. The
messages in this class begin with the string “MJ*”.

2. Lexical errors. Compilation continues with the offending text
converted to a unique illegal token. The messages in this
class begin with the string “*L*”.

3. Syntactic and semantic errors. Compilation continues but no
SIL code will be generated for the #DF containing the error.
The messages in this class begin with the string “*S~”.

4. Compiler errors. Compilation is aborted . The output file is
in an undefined state. The messages in this class begin with
the string “*C*”.

Error messages are written into the error_output I/O switch as they
occur. An example of an error message follows.

1/CONTEXT-FREE-SYNTAX:

#DF: syntaxo

5
—> 1/.

+
*S* expected syntactic—expression after ~~>

The first line is the section in which the error occurred. It will be one
of the keywords:

19



-~~ ~~~~~~~ - --—--- -~~~~~ - -~~~~~~~

DECLARE-GLOBAL
DECLARE—SYNTACTIC—COMPONENT
CONTEXT-FREE-SYNTAX
SEMANTIC-DEFINITIONS
CONTROL-COMMANDS

The second line is the DF name in which the error occurred (e.g., syntaxo).
The third line is the line number of the source in which the error occurred.
The fourth line is the text of the line in which the error occurred. The
fifth line is an indication of where in the line the error was detected.
The sixth line is a descriptive error message. The first four lines are
not repeated for additional error messages referring to the same source
line.

9.2 Executer Commands

The Executer is that part of the SEMANOL(76) Interpreter which actually
executes SEMANOL(76) metaprograms. Each Executer command is a separate
program called from MULTICS command level. The programs communicate
through FORTRAN COMMON blocks which are initialized by the semanol command .
Note that the Translator is a separate program which communicates with the
Executer commands only through SIt files. Some sample Executer commands
follow:

semanol mini_basic. sil

run mini_basic.prog mini_basic.data

These commands assume (as do all of the examples that follow) that (1)
mini_basic.sil is an ASCII segment containing the Translator SIL output
from translating a SEMANOL(76) metaprogram description of the demonstration
language mini_basic, (2) mini_basic.prog is an ASCII segment containing a
sample mini_basic program, and (3) mini_basic.data is an ASCII segment
containing input data for the sample mini_basic program.

The first step prior to using the Executer is to establish links to the
21 Executer commands. After this, the first command executed must be the
semanol command. The command

semanol mini_basic . sil

accomplishes several things:

(1) It initializes the Executer and the COMMON blocks which provide
communication between the commands.

(2) It loads all of the #DFs on the ASCII text segment mini_basic.sil.
(Presumably this segment contains the SIL output of a previous
translate command.)

20

_



~ —
~~--‘--i-’r-—r -’ -- . -.-- - ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- 

•

The semanol command may produce output lines of the form

scomp called
scomp returns

or

ggc called
ggc returns

indicating that the string compactor or garbage collector was called . These
routines are required to reclaim unused internal memory and take about
10 CPU seconds for the string compactor and 15 CPU seconds for the garbage
collector to run. The messages are printed so that the user will know when
his processing time is spent doing these overhead functions. Note that
once the semanol command is executed, it need not be executed again during
the current process.

— The run command is used to actually begin execution of a SEMANOL(76) meta—
program. Assume, for example, that the aemanol command has just been
executed , loading from mini_basic.sil the SIL corresponding to a SEMANOL(76)
description of mini_basic (a simple demonstration language). Assume, also,
that a nitni_basic test program exists on file nzini_basic.prog and that its
input exists on file niini_basic.data. Then the program can be run with
the specified input by typing

run mini_basic.prog mini_basic.data

The command can be executed again for an additional run, perhaps with
different data.

Suppose the following mini_basic program is on file mini_basic.prog:

10 INPUT I
20 IF I >— 2 THEN 50
25 GOSUB 60
30 LET I — I + 1
40 COTO 20
50 STOP
60 PRINT I
70 RETURN
80 END

(Each line is assumed to be followed by a line—feed.) And suppose 0
followed by a line—feed is on file mini_basic.data. Then the run output
will look like the following:

21 

~ --~~~--- - --~~---- -—-— -  -



— - — -
~

r—-
~

- — ———— - -~-r--- ---~ — - - -- - -  ~—,-----_~~-. .—, - ._ . _-,--. .• ----
~~,‘•-;.. ~~~~~~~~~~~~~~~~~~~~~~~ 

- - ‘‘~‘ -(~~~ - - 
—

run aini_basic.prog mini basic.data

0

1

mstop called

in #CONTROL at location 54: level 1

STOP

r...

The first line is typed by the user and initiates the run of the sample
mini_basic program and its data. The second line “?O” is output by the
SEMANOL(76) metaprogram to indicate that 0 has been input by the INPUT I
statement on line 10. The next two lines “0” and “1” are the output from
the PRINT I statement on line 60. The next three lines are output by
the Executer to indicate that a normal termination has occurred. The
last line is the NULTICS ready message.

As with the semanol command , there are other possible outputs. Again

scomp called
scomp returns

indicates that a string compaction is taking place and

ggc called
ggc returns

indicates that a garbage collection is taking place. Either of these
messages may occur during other commands, also. In the example run above,
a 1/STOP was executed as indicated by the message “mstop called.” In some
other run an error message will be printed out in the form

1/error executed
in error at location 12: level ~

The first line is the error message itself. The second line indicates (as
in the normal termination in the example above) the location of the error
(#1W name and relative code list location) and the level of the #DF stack
at the time of error. Here 1/error was executed in a #DF named error at
relative location 12 and #DF stack level 5. This is the standard form
for any error message occurring during execution.

22



There are 19 Executer commands other than semanol and run . All must
follow the semanol command and all are discussed in the following pages.
Some general Executer command concepts follow:

• Whatever applies to #DFs, also applies to #PROC—DFs. The term
“#DF” is used throughout.

• An error detected in a multiple argument command cancels processing
in later arguments.

• A loaded #DF is one whose corresponding SIL has been read by a pre-
vious semanol or load command. An unloaded #DF is one whose SIL
has not been so read.

• All commands terminate by printing STOP followed by the MULTICS
ready message.

• An error message, a string compaction message, or a garbage collection
message may appear at any time.

Break Commands

Associated with each loaded #DF is a break flag which may be on or off.
If the break flag is on for a given #DF, execution is suspended whenever
that #DF is called. The user may want to define some euxiliary #DFs which
print important intermediate results. Then, when a break occurs, he can
execute these #DFs using the executedf command. After a break has
occurred, the user can continue execution with the continue command.
A soft escape is available using the interrupt command. The available
break commands are described below.

brlst

brlst

The brlst command lists the names of all loaded #DFs which have
their break flag on.

No error can occur.

broff

broff dfnamel ... dfnameN

dfnamel the name of a loaded #DF

The broff command turns the break flag off for each #DF named
in its argument list.

An error is signalled if there is no argument or if one of the
arguments names an unloaded #DP.

23

p -- - - -~~~—~~ ~~- ~~-~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



-~ 
~~~~

‘
~
—

~~
---- ~~~ -----_-.- --- -~ ,— ,- - -_ - “

~,—.—.—-——-——_—-_..— ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

bron

bron dfnamel ... dfnameN

dfnaael the name of a loaded 1/DY

The bron command turns the break flag on for each #DF named
in its argument list.

An error is signalled if there is no argument or if one of the
arguments names an unloaded 1/OF.

continue

continue

The continue command continues (resumes) execution after a break
or error has suspended execution.

An error occurs if it is not legal to continue (e.g. because a
run command was never executed) .

interrupt

interrupt

The interrupt command sets a flag so that the Executer will break
at the next #DF called.

No error can occur , but the command should only be used as explained
below .

The use of the interrupt command is different from that of other commands.
It is used to simulate a sof t escape, i.e. a break set on the fly, from
a running metaprogram. Simply typing the MULTICS escape may leave the
Executer data structures in a compromised condition. The interrupt coninand
allows a break to occur at a safe place.

Assume that the run command has been typed and that a metaprogram is in
the midst of executing. To safely stop it the user should do the following:

(1) Hit the MULTICS escape key. This returns the user to MULTICS
command level and leaves the Executer in an unknown state.

(2) Type the interrupt command. This executer command sets an
interrupt flag in the COMMON communication area and then returns
to MULTICS command level.

24

~~~~~~ -- -~~ --~~~~~~~~~~~ - —--~~- .~~-—-— -- - -—-~~- - -  ~~~~~~-~~~-- -—p— -—---



(3) Type the MULTICS start command. This allows the Executer to
continue at the escape point in (1) above . The Executer will
then break at the next 1/DY called , leaving the system uncompro.-
ised .

(4) At this point , the user can execute any command that he would
normally execute after a break , e.g. he can continue.

Following is a sample session at the terminal which illustrates the various
breaking commands. The user types the lines followed by a *,the computer
types all other lines. Note that “r.. .“ represents the MULTICS ready
message and [escape] represents a user—typed escape:

semanol mini_basic.sil *
STOP
r

brlst *
STOP
r ...
bron simple—successor *
STOP
r

brlst *

simple—successor
STOP
r

run mini_basic.prog aini_basic.data *

break at simple—successor
in statement—successor—of at location 75: level 2
STOP
r

continue *
break at simple—successor
in if—then—s uccessor at location 28: level 3
STOP
r . .
broff simple—successor *
STOP
r

brist *
STOP
r

25

- - - ~~~~~—- — - S. rn, - - -— ~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —--- ---- -_ -~ - -— - ---—— - - ‘-- -- _ -— - -



— ~~~~~~~~~~~~~~~~~~~~~~~ -urr, w rr - ~~~
_ _

~~
_

~
_

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ W”!~~~~~~~~~~~~ _,r,_ -~~~-~_ —— ~~~— - -‘~~- —-~— — p  - — —_-~~~~ ‘- .
~~~~~~ ‘ ‘

continue *
0
j escape] *
QUIT
r ...

interrupt *
r

start *
interrupt
break at sequence—of—executable—statements—in
in simple—successor at location 27: level 3
STOP
r ...

continue *
1
mstop called
in 1/CONTROL at location 54: level 1
STOP
r ...

Syntactic Component Commands

Associated with each loaded #DF is a syntactic component flag. In the
default case, this flag is on if the #DF is declared as a 1/SYNTACTIC—
COMPONENT in the SEMANOL(76) metaprogram, and the flag is off otherwise.
The user may wish to incrementally override these declarations for one
reason or another , and that is the purpose of the syntactic component
commands. These commands are described below.

sclst

scist

The sclst command lists the names of all loaded #DFs which have their
syntactic component flag on.

No error can occur.

scoff

scoff dfnamel ... dfnameN

dfnamel the name of a loaded #DF

The scoff command turns the syntactic component flag off for each
#DF named in its argument list.

An error occurs if there is no argument or if one of the arguments
names an unloaded 1/OF.

26

~~~~~ - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



.—‘-,——-.--—,-,-.-—..—-— .-~ ——-. ,- --‘,-—.-—--—--.---, ——--~--——--— ----— ,— - --.—- -_— ‘.~——-.— — -,~——-— - .- -—.— -.- --- —- ---- -.- - ——.~~——. .—------.—-- — - ---

scon

scon dfnamel ... dfnameN

dfnamel the name of a loaded 1/DY

The scon command turns the syntactic component flag on for each 1/DY
named in its argument list.

An error is signalled if there is no argument or if one of the
arguments names an unloaded 1/DY.

Note that in most cases scon should be used only if a run command
(as opposed to a continue command) is to start execution.

Trace Commands

Associated with each loaded 1/DY is a trace flag which may have one of four
possible values. By judiciously setting trace flags on various #DFs, the
user can selectively trace desired portions of his SEMANOL(76) metaprogram’s
execution. The default trace flag value is trcneu. If all trace flags
are set to this value, no tracing occurs.

When a 1/DY is called, a determination Is made as to whether that #DF is to
be traced. If a 1/DY is traced, a message indicating its name and the level
number of the caLl is printed at both the call and the return. The returned
value is also printed at the return. The following table indicates whether
any given 1/DY is traced :

1/DY trace flag value Action

TRCON Trace the #DF , independent of its caller.

TRCOFY Do not trace the #DF , independent of its
caller.

TRCTEM Trace the 1/OF, independent of its caller.
(See TRCNEU for difference from TRCON)

TRCNEU Trace the 1/DY if its caller was traced and
its caller did not have trace flag value
TRCTEM . Otherwise , do not trace the 1/DY .

27



~ - -~ - -~~~~~~~~~~~~~~~~~~ -—-~ -—-~~~— 
_p___,_. , _ _.._, _,__,_ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

----.----.--— -.-~- - - -

tracef lie

tracefile file. trace

file.trace optional pathname of a segment to receive the trace output

Trace output is normally (by default) sent to the terminal. The
tracefile command directs subsequent trace output to the specified
segment. If no segment is specified, subsequent trace outpu t is again
sent to the terminal. Note that to print a trace output segment, the
user must first type the NULTICS adjust_bit_count command, giving the
pathname of the segment as argument.

trist

trlst

The trlst command lists the names and local trace flag values of all
loaded 1/DYs which do not have local trace flag value trcneu. Possible
listed trace flag values are trcon, trcoff , and tretem.

No error can occur.

trneu

trneu dfnamel. . .dfnameN

dfnamel the name of a loaded 1/DY

The trneu command sets the local trace flag for each 1/DY named in
its argument list back to the default value trcneu.

An error occurs if there is no argument or if one of the arguments
names an unloaded #DF.

troff

troff dfnamel...dfnameN

dfnamel the name of a loaded #DF

The troff command sets the local trace flag for each 1/DY named in
its argument list to trcoff.

An error occurs if there is no argument or if one of the arguments
names an ‘..nloaded 1/OF.

28

~ 

-~~~~,- - - - - - --~~~~~ --,~~- - - -  - -



—-~~~~~~~~~~~~~~ -~~~~~~—~~~~~~ - ‘ ~~~~~~~~~~~~~~ ‘~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘
~~ 

- 
-
~~~~ 

-

tron

tron dfnamel...dfnameN

dfnamel the name of a loaded 1/DY

The tron command sets the local trace flag f or each 1/DY named in its
argument list to trcon.

An error occurs if there is no argument or if one of the arguments
names an unloaded 1/DY.

trtem

trtem dfnamel. . .dfnameN

dfnamel the name of a loaded #DF

The trtem command sets the trace flag for each 1/DY named in its
argument list to trctem.

An error occurs if there is no argument or if one of the arguments
names an unloaded 1/Dr.

Following is a sample session at the terminal which illustrates the various
tracing coninands. The user types the lines followed by a *, the computer
types all other lines. Note that “r...” represents the NULTICS ready
message. Also, note that 1/CONTROL is the name used to refer to the
1/CONTROL—COMMANDS section:

semenol mini_basic.sil *
STOP
r...

tron 1/CONTROL *
STOP
r...

trlst *
1/CONTROL trcon
STOP
r .. .

run mini_basic.prog mini_basic.data *
O call of 1/CONTROL
1 call of is—syntactically—valid

All bPs are traced in the above example.

29

--

p p . . -,.-~~-,- -~~~~~~~~~ p- ~~~~~~~~~~~~~ - . ~~‘ ‘p ~~~~~~ ~~~~~~~~~~ ‘“ “.r’ -p- ~~~~ - ‘ “f l
~~~~~

‘ 

Miscellaneous Commands

The remaining commands described below are neither break commands, nor
syntactic componen t commands , nor trace commands. Note that this section
further expands on the seinanol and run commands introduced previously.

calst

calst

The calst command prints the current state of the 1/DY call stack, one
1/OF name per line. It is used after an error or break.

No error can be signalled by calst.

executedf

exedutedf dfname

dfname the name of a loaded 1/DY

The executedf command begins execution by calling the named #DF with
no arguments. A run command may have been previously executed, but
that is not required.

An error occurs if there is no argument or if the argument names an
unloaded 1/OF.

load

load file.sil

file.sil mandatory pathname of an ASCII segment containing SIL
output produced by the Translator

The load command loads a SIL file, making its #DYs ready to run. The
command can be used to incrementally add or update SIL code. The
last loaded version of any 1/DY is the one used when a new 1/DY call
occurs. Note that the break, trace, and syntactic component flags
f or any incrementally updated 1/OF are reset to their default values
(i.e. , break to off , trace to trcneu, and syntactic component to on
or off , depending on declarations in the translated SEMANOL(76)
metaprogram).

An error occurs if an attempt is made to load a 1/DY currently on the
#DF call stack (i.e., in execution). An error also occurs if the
load argument is missing.

30

_ --

~

‘-

~

-P-,-- - -

~ 

-—-—-,-
~~~~~—-. _ _ _


‘~
‘

~ , ‘r - - ‘ — - -. - ~~! - r -~~~~V. ‘~~~~~~~~~~~~~~ ‘_ ~~ ‘
-

prcl

prcl dfnamel dfname2 ... dfnameN

dfnamel the name of a loaded #DF

The prcl command prints the internal form of the SIL code for each
1/DY named in its argument list. It is of use only to those familiar
with this internal form .

An error occurs if there is no argument or if one of the arguments
names an unloaded 1/DY.

reset

reset

The reset command resets the Executer to a state all ready to begin
execution. All #DF5 currently in execution are unstacked, the same
as in the run command. Execution does not begin. The purpose of
reset is to restore the Executer to a point at which a #DF previously
in execution can be reloaded using the load command .

No error can occur. I
run file.prog file.data

file.prog optional pathname of an ASCII segment containing the
string to be returned by #CIVEN—PROGRAN during this
execution

file.data optional pathname of an ASCII segment containing the
string to be returned by 1/INPUT during this execution

The run command first resets the Executer #DF call stack to level 0
(i.e., to empty) and assigns 1/UNDEFINED to all global variables and
names in the 1/ASSIGN—LATEST—VALUE space. It then begins running the
previously loaded 1/DY. The first code executed is that corresponding
to the 1/CONTROL—COMMANDS section.

Many different execution errors can occur as explained previously.
Also, an error will be signalled if either optional pathname specifies
a non—accessible file.

31

— —‘-, -- -
-~~*---.-v--_----

~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~
--
~~ 

_p__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— —.  --- —-,--, 

‘ - -

semanol

semanol file.sil

file.sil optional pathname of an ASCII segment containing SIL output
produced by the Translator

The semanol command initalizes the Executer and its associated COMMON
areas. It must be executed prior to the execution of any other
Executer command. Optionally, the command loads a SIL file, making
its #DF5 ready to run.

An error occurs if the optional pathname specifies a non—accessible
or empty f ile, or if the contents of the specified file contains
illegal SIL.

32

_______________- —— ~~~~~~~~~~‘P p ~~~~~~~~~~~~~~ —~~P~.— — -— — —~~ ~~~~~~~~~~~ —


